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Social Transmission Bias and Investor Behavior

Abstract

Individual investors often invest actively and lose thereby. Social interaction seems to

exacerbate this tendency. In our model, senders’ propensity to discuss their strategies’

returns, and receivers’ propensity to be converted, are increasing in sender return. A

distinctive implication is that the rate of conversion of investors to active investing is convex

in sender return. Unconditionally, active strategies (high variance, skewness, and personal

involvement) dominate the population unless the return penalty to active investing is too

large. Thus, the model can explain overvaluation of ‘active’ asset characteristics even when

investors have no inherent preference over them. In contrast with nonsocial approaches,

sociability and other features of the sending and receiving processes are determinants of

the popularity of active investing and the pricing of active strategies.
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1 Introduction

A neglected topic in financial economics is how investment ideas are transmitted from per-

son to person. In most investments models, the influence of individual choices on others

is mediated by price or by quantities traded in impersonal markets. However, more di-

rect forms of social interaction also affect investment decisions. As Shiller (1989) put it,

“...Investing in speculative assets is a social activity. Investors spend a substantial part

of their leisure time discussing investments, reading about investments, or gossiping about

others’ successes or failures in investing.” In one survey, individual investors were asked

what first drew their attention to the firm whose stock they had most recently bought.

Almost all referred to direct personal contact; personal interaction was also important for

institutional investors (Shiller and Pound 1989). Furthermore, an empirical literature finds

that social interactions affect investment decisions by individuals and money managers,

including selection of individual stocks.1

Our purpose here is to model how the process by which ideas are transmitted affects

social outcomes, with an application to active versus passive investment behavior. We

view the transmission process here as including both in-person and electronic means of

conversation, as well as one-to-many forms of communication such as blogging and news

media. Our approach is based on the idea that conversational biases can favor superficially-

appealing but mistaken ideas about personal investing (Shiller 2000a; Shiller 2000b).

It is a remarkable fact that individual investors trade actively and have invested in

active investment funds for decades, and thereby have on average underperformed net of

costs relative to a passive strategy such as holding a market index—the active investing

puzzle.2 In addition to underperforming relative to factor benchmarks, trading in individual

stocks and investing in active funds adds idiosyncratic portfolio volatility. For example,

Calvet, Campbell, and Sodini (2007) report that idiosyncratic risk exposure of Swedish

households accounts for half of the return variance for the median household.

Active investing reflects a belief of individual investors in their ability either to identify

stocks or funds that will outperform the market. Financial scams such as the Madoff scheme

1Shiller (1990, 2000b) discusses other indications that conversation matters for security investment
decisions and bubbles. The empirical literature includes Kelly and O’Grada (2000), Duflo and Saez (2002,
2003), Cohen, Frazzini and Malloy (2008, 2010), Ivković and Weisbenner (2007), Brown et al. (2008),
Hong, Kubik, and Stein (2004, 2005), Massa and Simonov (2005), Shive (2010), Gray, Crawford, and Kern
(2012), and ?).

2On underperformance in individual trading, see Barber and Odean (2000b), Barber et al. (2009).
Carhart (1997) and Daniel et al. (1997) find that active funds typically do not outperform passive bench-
marks. French (2008) documents very large fees paid in the aggregate by investors to active funds.
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also rely on investors’ belief that they can identify superior investment managers. A further

notable aspect of active investing is that investors are attracted to stocks with high skewness

(‘lottery’ stocks) as well as volatility (Kumar 2009; Bali, Cakici, and Whitelaw 2011; Han

and Kumar 2013; Boyer and Vorkink 2014).

The leading theories of naive active investing are based on individual-level cognitive bi-

ases. For example, the most common explanation offered for excessive individual investor

trading is overconfidence (DeBondt and Thaler 1995; Barber and Odean 2000b), the ten-

dency of investors to overestimate their abilities. However, trading aggressiveness is greatly

exacerbated by social interactions. For example, participants in investment clubs seem to

select individual stocks based on reasons that are easily exchanged with others (Barber,

Heath, and Odean 2003); select small, high-beta, growth stocks; turn over their portfo-

lios very frequently; and underperform the market (Barber and Odean 2000a). Contagion

in stock picking by individuals and institutions spreads a type of speculative behavior.

Furthermore, stock market participation increases with measures of social connectedness

(Hong, Kubik, and Stein 2004; Kaustia and Knüpfer 2012).3

The leading explanations for the attraction to lottery stocks have also uniformly been

based on individual-level biases—specifically, nontraditional preferences (Brunnermeier and

Parker 2005; Barberis and Huang 2008). One contribution of our paper is to describe a

simple mechanism that can lead to attraction to skewness even if investors have conven-

tional preferences. Also, there is evidence that higher intensity of social interactions is

associated with stronger attraction of investors to both high volatility and high skewness

stocks (Kumar 2009).

Although individual-level biases are likely to be an important part of the explanation

for active investing, these facts suggest looking beyond direct individual-level psychological

biases alone, to an explanation based on social interaction. However, the sheer fact of

contagion in investment choice, as documented in recent work, does not in itself explain a

tilt toward active investing strategies. Either active or passive strategies can spread from

person to person. This paper explicitly models biases in the transmission process—biases

which endogenously turn out to promote active over passive investing. Our model offers a

rich set of further testable implications, such as convexity in the relation between conversion

to a new strategy and its past returns, and a greater attraction of more sociable investors

3During the millennial high-tech boom, investors who switched early to online trading subsequently
began to trade more actively and speculatively, and earned reduced trading profits (Barber and Odean
2002; Choi, Laibson, and Metrick 2002). Early internet investors probably had greater access to and interest
in online forms of social interaction, such as e-mail and investment chat rooms. Internet discussions rooms
were, according to media reports, important in stimulating day trading.
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to high variance and high skew strategies.

The key features of our model are the sending schedule, which gives the probability

that the sender reports the sender’s return outcome as a function of that return. The

receiving schedule is defined as the probability that a given reported return will convert

the receiver to the strategy of the sender. The purpose of our model is to describe the

interplay between the probability distribution of strategy return outcomes with the shapes

of both the sending schedule and receiving schedule. Together, these determine the spread

of competing investing strategies. Also, our social framework captures what we regard as

an important element of active investing, the tendency for investors to trade heavily stocks

that are attractive to talk about with others.

As an illustration of the roles of the sending function, we find that high-volatility strate-

gies spread because investors like to recount to others their investment victories more

than their defeats, and that listeners do not fully discount for this. We call this behavior

self-enhancing transmission bias, or SET.4 There is considerable evidence consistent with

self-enhancing thought processes and financial behavior.5

Both a rational concern for reputation and psychological bias can contribute to SET.

Research on self-presentation and impression management finds that people seek to re-

port positively about themselves, as constrained by the need to be plausible and to satisfy

presentational norms (Goffman 1961; Schlenker 1980). In a review of the impression man-

agement field, Leary and Kowalski (1990) discuss how people tend to avoid lying, but

selectively omit information, so that “Impression management often involves an attempt

to put the best parts of oneself into public view” (pp. 40-1).

There is also evidence of internal self-enhancing thought processes, such as the tendency

of people to attribute successes to their own virtues, and failures to external circumstances

or luck (Bem 1972; Langer and Roth 1975). Self-enhancing psychological processes en-

4Although SET, a characteristic of the sending schedule, is a key contributor to the spread of active
investing, both sending and receiving schedules matter (as do the underlying psychological forces that
determine them). For example, in Subsection 2.8 we discuss how salience of extreme outcomes to receivers
also promotes strategies with high volatility.

5Karlsson, Loewenstein, and Seppi (2009) and Sicherman et al. (2012) find that Scandinavian and
U.S. investors reexamine their portfolios more frequently when the market has risen than when it has
declined. Consistent with SET, for a wide set of consumer products, positive word-of-mouth discussion
of user experiences tends to predominate over negative discussion (see the review of East, Hammond, and
Wright (2007)), perhaps because users want to persuade others that they are expert at product choice
(Wojnicki and Godes 2008). Consistent with SET in investing behavior, in a database drawn from a
Facebook style social network for individual investors, Simon and Heimer (2015) report that traders are
more likely to initiate communication with others when they experience strong short-term gains. A one
standard deviation higher weekly returns is associated with a 7% higher probability of contacting other
traders in a given week.
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courage people to think more about their successes than their failures (as in the model of

Benabou and Tirole (2002)). It is a small step from thinking in a self-enhancing way to

talking that way.

In our model, investors adopt either an Active (A) or Passive (P) investment strategy.

We interpret A as the riskier option, or alternatively, the more engaging one (meaning that

adopters are, all else equal, more likely to talk about it, perhaps because it is more novel,

affect-laden, or arousing). SET creates an upward selection bias in the reports received by

other investors about the profitability of the chosen strategy: they hear more often about

good outcomes than bad ones. The size of the selection bias increases with return variance;

for example, if variance is zero the selection bias vanishes. We further assume that listeners

do not fully discount for the biased sample of return reports they receive, and that they

regard past performance as indicative of future performance. So if A has higher variance

than P, receivers overestimate the value of adopting A relative to P, so A spreads through

the investor population.

As an illustration of the importance of the receiving schedule, suppose that receivers

attend more to extreme outcomes, which tends to increase the probability of their being

converted (relative to a linear increasing receiving schedule), i.e., it makes the receiving

function convex. This makes extreme returns incrementally more persuasive to the receiver

(though it is always still the case that higher returns are more persuasive than lower

returns). High salience of extreme outcomes also promotes strategies with high volatility,

because such strategies generate extreme returns more often.

As an illustration that the interaction of the sending and receiving schedules is crucial,

suppose that there is both SET on the part of senders and salience of extreme returns on the

part of receivers. We show that this causes high skewness strategies to spread—even after

controlling for volatility. The reason is that such strategies more often generate the extreme

high returns which are most often reported, attended to, and influential. As a result, A

spreads through the population unless it has a sufficiently strong offsetting disadvantage

(lower expected return).

Finally, if A is more engaging than P as a conversation topic (more conversable, in our

terminology), then A is recommended and its return reported to current adopters of P more

often than reports about P are made to adopters of A. This favors the spread of A.

We show that the shapes of investor sending and receiving functions provide a fun-

damentally social explanation for a wide range of patterns in trading and returns. These

include the convexity of new participation in investment strategies as a function of past per-
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formance;6 the participation of individuals in lotteries with negative expected return; the

attraction of some investors for high variance or high skewness (‘lottery’) stocks; overvalu-

ation of growth firms, distressed firms, firms that have recently undertaken Initial Public

Offerings (IPOs), and high volatility firms; and heavy trading and overvaluation of firms

that are attractive as topics of conversation (such as sports, entertainment, and media

firms, firms with hot consumer products, and local firms). There are alternative theories

based upon individual-level biases that offer piecemeal explanations for subsets of these

facts; our framework provides a unified explanation.

A key further set of implications of our approach is that these effects are intensified by

social interactions, and therefore will be stronger when there is higher sociability. There

is evidence supporting the hypothesis that these effects are associated with proxies for

sociability.7 Our approach also offers the empirical predictions that sociability increases

the slope and convexity of the schedule describing the adoption of active investing strategies

by new investors as a function of the past returns of such strategies. Our framework also

offers a distinctive set of further empirical implications derived from varying the parameters

of sending and receiving schedules, such as SET, the sensitivity of receivers to reported

returns, and the intensity of social interactions. So our approach offers a social explanation

for several well-known investor trading behaviors, in addition to its untested implications.

We are not the first to examine bias in the social transmission of behavior. The effects

of social interactions on the spread of cultural traits have been analyzed in fields such

as anthropology (Henrich and Boyd 1998), zoology (Lachlan, Crooks, and Laland 1998;

Dodds and Watts 2005), and social psychology (Cialdini and Goldstein 2004). Economists

have also modelled how cultural evolutionary processes affect ethnic and religious traits, and

altruistic preferences (Bisin and Verdier 2000; Bisin and Verdier 2001). The focus here is on

understanding investment and risk-taking behavior. Financial models have examined how

social interactions affect information aggregation, and potentially can generate financial

crises.8 This paper differs from this literature in examining how SET and other social

6The convexity implication is consistent with evidence of disproportionate inflows to strongly-performing
mutual funds. Kaustia and Knüpfer (2012) provide evidence of such convexity in new stock market par-
ticipation as a function of neighbor’s recent stock return. Our model predicts this effect as a result of
interactions between the shapes of the sending and receiving functions.

7See, e.g., Hong, Kubik, and Stein (2004) and Kaustia and Knüpfer (2012) for stock market participa-
tion, and Kumar (2009) for preference for high skewness stocks and high volatility stocks.

8Such models address how information flows in social networks affect asset markets (DeMarzo, Vayanos,
and Zwiebel 2001), crises and herd behavior (Cipriani and Guarino 2002; Cipriani and Guarino 2008), and
IPO allocations and pricing (Welch 1992). Brunnermeier (2001) and Hirshleifer and Teoh (2009) review the
theory of herding in financial markets. Recent models of social networks explore information acquisition,
cost of capital, liquidity, and trading volume (Ozsoylev and Walden 2011; Han and Yang 2013). Burnside,
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transmission biases affect the evolutionary outcome.

DeMarzo, Vayanos, and Zwiebel (2003) show that persuasion bias, the failure of receivers

to account for possible repetition in the messages they hear from others, plays an important

role in the process of social opinion formation. They find that network position is a key

determinant of how influential an individual is, and that an individuals positions across

different issues will be highly correlated. Our paper differs in focusing on other transmission

biases originating from both senders and receivers, and in exploring the spread of active

investing.

Hong, Kubik, and Stein (2004) provide evidence of social influence in stock market

participation. In their motivating model, it is assumed that social interaction causes par-

ticipation, but not nonparticipation, to spread from person to person. It follows that more

social individuals will participate more. However, the opposite is entirely possible. Peo-

ple who fear the market or view it as an unsavory gambling casino can spread negative

attitudes to others, promoting nonparticipation. Our paper differs in modeling explicitly

what kinds of investor performance information tends to be transmitted to and utilized by

others, consistent with the social psychology of conversational behavior, and in deriving

endogenously whether active or passive investing spreads.

Also, in Hong, Kubik, and Stein (2004), more social investors spread and acquire useful

financial education, so that socials are more sophisticated investors. As such, they are more

likely to participate in the stock market but are presumably less likely to choose other active

strategies that underperform. In contrast our approach implies that more social investors

will seem to be smart in some ways (participation) but will seem foolish in other ways

(e.g., investing in active high-expense mutual funds, day trading, or trying to pick the best

IPOs).

2 The Model

2.1 Social Interactions, Timing of Events, and Population Shifts

The Population

We consider a population of N individuals who adopt one of two types of investment

strategies, A (Active) and P (Passive), which have different return probability distributions.

The total number of individuals in population, N , is constant over time. In each period

Eichenbaum, and Rebelo (2011) apply an epidemic model to explain booms and busts in the housing
market; they do not examine transmission bias in conversation, which is the focus of our paper.
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(generation), a pair of individuals is randomly selected to meet.9 In each pair, one investor

randomly becomes the sender and the other the receiver.10 The returns of the sender and

receiver from their current strategies over the period are realized. The sender reports his

return to the receiver with probability s(Ri) for sender of type i, which is increasing in the

sender’s return. Finally, a receiver who receives a message is transformed into the type of

the sender with probability r(Ri), also increasing in the sender’s return.

When an AA or PP pair is drawn, population frequencies remain unchanged. When

A and P meet, with probability s the sender communicates his performance and upon

receiving the message, the receiver converts to the type of the sender with probability r.

We assume that the sending and receiving functions (s and r) directly depend only on

the sender’s return, i.e., for given return, they are independent of whether the sender or

receiver are A or P. Nevertheless, transformations do depend on which type becomes the

sender, as this affects the distribution of the sender’s return.

Let NA be the number of type A and f be the population frequency of type A at the

start of a period before the meeting, with

f ≡ NA

N
. (1)

Denote the frequency of type A individuals, after two individuals meet by f ′ (which is also

the frequency of type A individuals at the start of the next period). Let Tij(Ri) be the

probability that the sender, who is of type i = A,P , transforms the receiver, who is of type

j, into type i, as a function of the sender’s return Ri. Then

f ′ − f =


1
N

with probability
(
χ
2

)
TAP (RA)

− 1
N

with probability
(
χ
2

)
TPA(RP )

0 with probability 1−
(
χ
2

)
[TAP (RA) + TPA(RP )],

(2)

where χ is the probability that a mixed pair is drawn,

χ ≡
(
NA

N

)(
N −NA

N − 1

)
+

(
N −NA

N

)(
NA

N − 1

)
=

2Nf(1− f)

(N − 1)
. (3)

9A standard model for allele (gene type) frequency change in evolutionary biology is the Moran process
(Moran 1962), in which in each generation exactly one individual is born and one dies, leaving population
size constant. Here we apply a Moran process to the spread of a cultural trait or, in the terminology of
Dawkins (1976), a meme.

10In actual conversations, often both parties recount their experiences. Our sharp distinction between
being a sender and a receiver in a given conversation is stylized, but since we allow for the possibility that
either type be the sender, is unlikely to be misleading.
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To derive the transformation probability function, we describe the sending function in more

detail in the next subsection, and then describe the receiving function in the subsection

that follows.

2.2 Self-Enhancement and the Sending Function

To capture self-enhancing transmission bias, we assume that the probability that the sender

of type i sends a message describing the sender’s strategy and the experienced return is

increasing in the performance of the sender’s strategy, Ri, so s′(Ri) > 0. Potentially

consistent with SET, Shiller (1990) provides survey evidence that people talked more about

real estate in U.S. cities that have experienced rising real estate prices than those that have

not. A sender may, of course, exaggerate or simply fabricate a story of high return. But if

senders do not always fabricate, the probability of sending will still depend upon the actual

return, and the reported return will tend to be increasing in the actual return.

We apply a linear version of SET,

s(Ri) = βRi + γ, β, γ > 0, (4)

where i is the type of the sender. Since the sending function is type-independent, β and γ

have no subscripts. To ensure that 0 ≤ s(Ri) ≤ 1, we require that −(γ/β) ≤ Ri ≤ (1−γ)/β

with high probability, which can hold under reasonable parameter values for β and γ.

The assumption that sending is stochastic reflects the fact that raising a topic in a

conversation depends on both social context and on what topics the conversation partner

happens to raise. A high return encourages a sender to discuss his investments, but senders

also prefer to obey conversational norms for responsiveness and against bragging.

The positive slope β of the sending schedule reflects SET. Consistent with β > 0, in a

database from a Facebook-style social network for individual investors, Simon and Heimer

(2015) report that the frequency with which an investor contacts other traders is increasing

in the investor’s short-term return. The more tightly bound is the sender’s self-esteem or

reputation to return performance, the stronger is SET, and therefore the higher is β.

The constant γ reflects the conversability of the investment choice. When the investment

is an attractive topic for conversation the sender raises the topic more often. The sender

also raises the topic more often when conversations are more extensive, as occurs when

individuals are more sociable (how much they talk and share information with each other).

So γ also reflects investor sociability.
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2.3 The Receiving Function

For a mixed pair of individuals, consider now the probability that a receiver of type j is

converted to the sender’s type i. Given a sender return Ri and that this return is indeed

sent, the conditional probability that the receiver is converted is denoted r(Ri). Before we

specify the functional form of r(Ri), we emphasize two implicit assumptions in our receiving

function.

First, we allow the possibility that receivers have some degree of skepticism about the

selection bias in the messages they receive, so long as such skepticism is not complete. There

is extensive evidence in various contexts that observers do not fully discount for selection

biases in the data they observe, a phenomenon called selection neglect.11 Selection neglect

is to be expected when individuals with limited processing power automatically process

data in fast intuitive ways rather than taking the effortful cognitive step of adjusting for

selection bias.

Second, we assume the receiver interprets sender return as providing information about

the desirability of the sender’s strategy. Regardless of whether such an inference is valid,

it is tempting, as reflected in the need for the standard warning to investors that “past

performance is no guarantee of future results.” Investors overweight past performance as

an indicator of future performance. One or a few recent observations of the performance

of a trading strategy generally convey little information about its future prospects. But

investors think otherwise. Such expectations are consistent with the representativeness

heuristic (Tversky and Kahneman 1974), and have been incorporated extensively in fi-

nancial models (e.g., DeLong et al. (1990), Hong and Stein (1999), Barberis and Shleifer

(2003)).12

The representativeness heuristic should attenuate the degree to which a receiver dis-

counts for a sender’s upward selection in reporting returns. A receiver who thinks that

even a single return observation is highly informative will adjust less for sender suppression

of bad news. If a receiver believes that past performance is indicative of strategy value,

and does not adequately adjust for SET as reflected in the sending function (4), then the

receiver will tend to overvalue the sender’s strategy. This tends to raise the probability of

11See, e.g., Nisbett and Ross (1980) and Brenner, Koehler, and Tversky (1996). Koehler and Mer-
cer (2009) find that mutual fund families advertise their better-performing funds, and that both novice
investors and financial professionals suffer from selection neglect. Selection neglect is consistent with rep-
resentativeness, a general psychological bias discussed below.

12There is evidence that investors have extrapolative expectations from experimental markets (Smith,
Suchanek, and Williams 1988; Choi, Laibson, and Madrian 2010), as well as surveys of return expectations
and field evidence on security and fund investing.
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type switching.

We assume a quadratic form of receiving function

r(Ri) = a(Ri)
2 + bRi + c, a, b, c > 0, (5)

under appropriate parameter constraints ensuring with probability close to 1, r is monotonic

and takes value between 0 and 1. To make sense of this functional form, assume the

receiver believes that the reported returns of the sender strategy are drawn from a normal

distribution with mean µ and variance σ2. The log-likelihood of observing a given return x

is −(x−µ)2/σ2. A higher report of strategy return is more convincing, as its (negative) log-

likelihood is higher, or equivalently, the ex-ante probability of hearing such a return is lower.

Thus, the relative probability of converting to the sender strategy upon hearing its return

x1 versus another return x2 is proportional to the log-likelihood ratio (x1 − µ)2/(x2 − µ)2.

This motivates the quadratic receiving function in (5).

Intuitively, b > 0 means that messages from a sender with strong performance are more

persuasive than messages from a sender with weak performance. The parameter b reflects

the degree to which the receiver tends to naively extrapolate past strategy returns, or at

least to be persuaded by high returns. The positive quadratic parameter a reflects the

tendency, after allowing for the effect of b, for extreme returns to be more persuasive.13

It captures general evidence that extreme news is more salient than moderate news, and

therefore is more often noticed and encoded for later retrieval (Fiske 1980; Moskowitz 2004;

Morewedge, Gflbert, and Wilson 2005).14 The assumption a > 0 is mainly needed for the

model’s skewness predictions, but also reinforces the variance predictions. When cognitive

processing power is limited, a focus on extremes is a useful heuristic, as extreme news

tends to be highly informative. The parameter c measures the susceptibility of receivers to

influence, deliberate or otherwise, of the sender’s report.

13The probability that the receiver is converted is smoothly increasing in the sender return, and is
positive even when the sender has a negative return. One reason for this is that the sheer fact that another
individual has adopted or recommends a trading strategy can make an investor aware of the strategy, and
can persuade in favor of it. Furthermore, the receiver may have experienced an even lower return on the
receiver’s current strategy. As a robustness check, in Subsection 2.8.2 we verify that similar results apply
in a setting where the switch decision depends on the difference in return between sender and receiver.

14High salience of extremes is consistent with the finding that individual investors are net buyers of
stocks that experience extreme one-day returns of either sign (Barber and Odean 2008), and the finding
that extreme gains or losses at other time horizons are associated with higher probability of both selling
and of buying additional shares of stocks that investors currently hold (Ben-David and Hirshleifer 2012).
It is also consistent with the salience theory of choice under risk of Bordalo, Gennaioli, and Shleifer (2012,
2013), wherein individuals’ attention focuses upon atypical payoffs, and with the sparsity-based model of
Gabaix (2014), wherein individuals construct a simplified model of the world by focusing on the values of
few relatively salient variables.
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2.4 Transformation Probabilities

We first examine TAP , the transformation probability for a sender of type A and receiver

of type P. By definition,

TAP (RA) = r(RA)s(RA)

= (aR2
A + bRA + c)(βRA + γ)

= aβR3
A +BR2

A + CRA + cγ, (6)

where

B = aγ + bβ

C = bγ + cβ. (7)

Similarly,

TPA(RP ) = aβR3
P +BR2

P + CRP + cγ. (8)

By assumption, r′, s′ > 0, so T ′AP (RA), T ′PA(RP ) > 0.

2.5 Evolution of Types Conditional on Realized Return

We first show that, owing to SET, high return favors active investing. We examine how

active return affects both the expected net shift in the fraction of As, which reflects both

inflows and outflows, and the expected unidirectional rate of conversion of passives to

actives, such as the rate at which investors who have never participated in the stock market

start to participate.

Given returns RP and RA, we can calculate the expected change in the fraction of type

A in the population after one social interaction between two randomly selected individuals.

In the four possible pairing AA, PP , AP , or PA (the first letter denotes the sender, the

second the receiver), the change in the frequency of type A given AA or PP is zero. The

expected changes in the frequency of type A given a meeting AP or PA and realized returns

are

E[∆f |AP,RA] =

(
TAP (RA)× 1

N

)
+ [(1− TAP (RA))× 0] =

TAP (RA)

N

E[∆f |PA,RP ] =

[
TPA(RP )×

(
− 1

N

)]
+ [(1− TPA(RP ))× 0] = −TPA(RP )

N
. (9)
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Taking the expectation across the different possible combinations of sender and receiver

types (AA, PP , AP , PA), by (2) and (9),(
2N

χ

)
E[∆f |RA, RP ] = TAP (RA)− TPA(RP ). (10)

So for given returns, the fraction of type A increases on average if and only if TAP (RA) >

TPA(RP ).

Recalling that TAP (RA) = s(RA)r(RA), we derive some basic predictions from the

features of the sending and receiving functions. If RA and RP are not perfectly correlated,

we can calculate the effect of increasing RA for given RP . Partially differentiating (10)

with respect to RA twice and using the earlier conditions that r′(RA), s′(RA) > 0, that

s′′(RA) = 0 by (4), and that r′′(RA) > 0 by (5) gives(
2N

χ

)
∂E[∆f |RA, RP ]

∂RA

=
∂TAP (RA)

∂RA

= r′(RA)s(RA) + r(RA)s′(RA) > 0 (11)(
2N

χ

)
∂2E[∆f |RA, RP ]

∂(RA)2
=

∂2TAP (RA)

∂(RA)2
= r′′(RA)s(RA) + 2r′(RA)s′(RA) > 0. (12)

Since RA affects TAP but not TPA, these formulas describe how active return affects both the

expected net shift in the fraction of As, and the expected unidirectional rate of conversion

from P to A.

Furthermore, substituting for the sending function s(RA) from (4) and the receiving

function r(RA) from (5) into (11) and (12) gives(
2N

χ

)
∂E[∆f |RA, RP ]

∂RA

= (2aRA + b)(βRA + γ) + β(aR2
A + bRA + c) (13)(

2N

χ

)
∂2E[∆f |RA, RP ]

∂(RA)2
= 2a(βRA + γ) + 2β(2aRA + b). (14)

Bearing in mind that the sending and receiving functions and their first and second deriva-

tives are all positive (which signs some of the terms in parentheses), it follows immediately

from (13) that the sensitivity of the transformation rate of investors to A as a function of

past active return is increasing with the parameters of the sending and receiving functions

(β, γ, a, b, c). By (14), a similar point follows immediately for convexity as well, with the

exception that c does not enter into convexity.

Proposition 1 Suppose that the returns to A and P are not perfectly correlated. Then:

1. If the sending and receiving functions are monotonically increasing, then the one-way

expected rate of transformation from P to A and the expected change in frequency of

A are increasing in return RA.
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2. If the sending and receiving functions are monotonically increasing, and linear or

convex, then the one-way expected rate of transformation from P to A and the expected

change in frequency of A are strictly convex in return.

3. Under the parametric specifications of the sending and receiving functions, the sensi-

tivity of the expected transformation rate of investors to active investing as a function

of past active return, and the convexity of this relationship, are increasing with SET

as reflected in β, sociability as reflected in γ, attention of receivers to extremes as

reflected in a, and the extrapolativeness of receivers b.

4. Under the parametric specifications of the sending and receiving functions, the sensi-

tivity of the expected transformation rate of investors to active investing as a function

of past active return (but not the convexity of this relationship) is increasing with the

susceptibility of receivers c.

This is a rich set of empirical implications, several as yet untested. Items 2-4 are distinc-

tive to our model. For example, since past literature has provided empirical proxies for

sociability, it would be interesting to test whether greater sociability is associated with

greater slope and convexity of the transformation of investors to active investing as a func-

tion of past returns on active strategies. It would also be interesting to test for the effects

of variation in SET as reflected in β, which could be measured using psychometric test-

ing, or exploit findings from cross-cultural psychology to test for differences in investment

behaviors across countries or ethnic groups.

Some important existing evidence is consistent with the first two empirical predictions.

Chevalier and Ellison (1997) and Sirri and Tufano (1998) find that investor funds flow

into mutual funds with better performance. This is a non-obvious effect since evidence

of persistence in fund performance is very limited. Furthermore, the flow-performance

relationship is convex; flows are disproportionately into the best-performing funds.

Lu (2011) finds that 401(k) plan participants place a greater share of their retirement

portfolios in risky investments (equity rather than fixed income) when their coworkers

earned higher equity returns in the preceding period. Kaustia and Knüpfer (2012) report

a strong relation between returns and new participation in the stock market in Finland in

the range of positive returns. Specifically, in this range, a higher monthly return on the ag-

gregate portfolio of stocks held by individuals in a zip code neighborhood is associated with

increased stock market participation by potential new investors living in that neighborhood
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during the next month.15 They also provide evidence that supports a prediction of Part 3

in Proposition 1 that the sensitivity of the one-way expected rate of transformation from P

to A (stock market entry in their setting) increases with the intensity of social interaction.

The greater strength of the effect in the positive range is consistent with the convexity

prediction. Our model does not imply a literally zero effect in the negative range, but a

weaker effect within this range (as predicted by Proposition 1) would be statistically harder

to detect.

In our setting, an increasing conversion of nonparticipants to participation derives from

the combination of SET and overextrapolation of others past returns. Part 1 of Proposition

1 captures SET by s′(RA) > 0, and the greater willingness of receivers to convert when

return is higher by r′(RA) > 0.

Part 2 of the proposition delivers a more subtle effect, the convexity of the conver-

sion/return relation. This effect arises naturally from the interaction of sending and re-

ceiving functions in our model. By (11), s′ > 0 and r′ > 0 together contribute to convexity

of expected transformation as a function of RA. Intuitively, multiplying two increasing

functions generates rising marginal effects as the argument increases. A further contrib-

utor is the convexity of the receiver function, r′′(RA), reflecting high salience of extreme

outcomes.16

If we interpret A as active trading in the market for individual stocks, with a pre-

ponderance of long positions, then a high market return implies high average returns to A

investors. Proposition 1 therefore implies that when the stock market rises, volume of trade

in individual stocks increases. This implication is consistent with episodes such as the rise

of day trading, investment clubs, and stock market chat rooms during the millennial inter-

net boom, and with evidence from 46 countries including the U.S. that investors trade more

when the stock market has performed well (Statman, Thorley, and Vorkink 2006; Griffin,

Nardari, and Stulz 2007). In Appendix E, we formally model market equilibrium with

15Their test focuses on the conversion of new investors to stock market investing, i.e., the conversion of
P’s to A’s. They do not test predictions in Proposition 1 about change in net shift from P to A, which
accounts for possible shifts from A to P as well.

16An examination of (13) and (14) clarifies the drivers of the basic findings (Parts 1 and 2). Part 1
holds even without SET (i.e., even if β = 0). Intuitively, a higher return is simply more persuasive to
receivers, which causes conversion. SET provides another channel for the prediction in Part 1 by causing
sending to increase after positive returns. For Part 2, attention to extremes (a > 0) promotes convexity,
because as past returns increase, at first the marginal effect is weak (because of lack of attention to very low
returns), and then becomes stronger (because of increasing attention to very high returns). But attention
to extremes is not required for convexity. Even if a = 0, SET induces convexity, because when β > 0,
the persuasive effect of higher return on receivers is reinforced multiplicatively by a stronger tendency of
senders to send.
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trading volume to verify that evolution toward A is associated with high trading volume.

2.6 Strategy Return Components and the Meaning of Active In-
vesting

We now make exogenous assumptions about the distributions of strategy returns to derive

implications about the spread of active investing. This partial equilibrium approach lets

us interpret ‘active investing’ broadly as referring either to static actions such as holding

a given risky asset, or to dynamic strategies such as day trading, margin investing, stock

picking, market timing, sector rotation, dollar cost averaging, technical analysis, and so

forth. In Section 3, to derive implications for equilibrium trading and prices, we model

A more specifically as placing a higher valuation than P upon a risky asset, and solve for

equilibrium expected returns of A and P. The advantage of the partial equilibrium approach

is that it permits a broader interpretation of A versus P, and that its milder assumptions

allow us to analyze simply the effects of return skewness.

Let r be the common component of returns shared by A and P (e.g., the market porfolio),

where E[r] = 0, and let εi be the strategy-specific component, E[εi] = 0, i = A,P . We

assume that r, εA and εP are independent, and write the returns to the two strategies as

RA = βAr + εA −D

RP = βP r + εP , (15)

where βi is the sensitivity of strategy return to the common return component. We assume

that the active strategy has higher systematic risk, βA > βP ≥ 0. We further assume that

σ2
A > σ2

P , γ1A > 0, γ1P ≈ 0, and γ1r ≥ 0, where σ2
A, σ2

P are the variances of εA and εP , γ1r

is the skewness of r, and γ1A, γ1P are the skewnesses of εA and εP . We also let σr denote

standard deviation of the common factor r.

To summarize these conditions, active investing means choosing strategies with return

distributions that have higher volatility and possibly also higher skewness. This corresponds

fairly well with common parlance, but there are possible exceptions. For example, a long-

short strategy that achieved low risk, or a dynamic hedging strategy using a stock and its

option that is used to generate a riskfree payoff would not be active in the sense we are

using.

Since E[r] = E[εi] = 0, (15) implies that E[RP ] = 0, and D is the return penalty (or

if negative, premium) to active trading. We call D the return penalty rather than the

‘cost’ of active trading, because a major part of the welfare loss may come from lack of
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diversification and excessive idiosyncratic risk-bearing. So even if D < 0, the As may be

worse off than Ps.17

2.7 Unconditional Expected Evolution of Types

Since the r and s functions are type-independent and the only random variable they depend

upon is the sender return, in expectation the spread of A versus P derives from the effect

of A versus P on the distribution of sender returns R, as reflected in mean, variance, and

skewness.

To see how the population evolves unconditionally after one meeting, we take the ex-

pectation of the change in the population fraction of A over RA and RP in (10):(
2N

χ

)
E[∆f ] = E[TAP (RA)]− E[TPA(RP )]. (16)

So the fraction of A increases on average if and only if E[TAP (RA)] > E[TPA(RP )].

By (15) and direct calculation,

TAP (RA)− TPA(RP ) = aβ
(
R3
A −R3

P

)
+B

(
R2
A −R2

P

)
+ C(RA −RP )

= aβ[(β3
A − β3

P )r3 + 3r2(β2
AεA − β2

P εP ) + 3r(βAε
2
A − βP ε2P ) + ε3A − ε3P ]

+ B[(β2
A − β2

P )r2 + 2r(βAεA − βP εP ) + ε2A − ε2P ] + C[(βA − βP )r + εA − εP ]

+ D{−(rβA + εA)[3aβ(rβA + εA) + 2B]− C}+D2[3aβ(rβA + εA) +B]

− aD3β. (17)

Taking the expectation over r, εA and εP , the expected change in frequency satisfies(
2N

χ

)
E[∆f ] = E[TAP (RA)− TPA(RP )]

= aβ[(β3
A − β3

P )γ1rσ
3
r + γ1Aσ

3
A − γ1Pσ

3
P ] + B[(β2

A − β2
P )σ2

r + (σ2
A − σ2

P )]

+ Daβ(−3σ2
A −D2 − 3σ2

rβ
2
A) +D2B −DC, (18)

recalling that σ denotes standard deviation and γ1· denotes skewness.

17Also, since E[r] = 0, the model only implicitly captures factor risk premia through the possibility of
a negative D; this expected return advantage to A is not a welfare advantage. Even when D < 0, if As
overvalue the risky asset and Ps are rational, being an A rather than a P decreases an individual’s true
expected utility (owing to excessive risk-taking, and an insufficient reward for bearing risk). So the return
penalty to active trading D underestimates the welfare loss from active trading. Greater transaction costs
of active trading (not modeled here) would also be reflected in D. There is evidence that U.S. and Taiwan
investors underperform in their individual stock trades (Barber and Odean (2000b), Barber et al. (2009)),
but that active individual fund investors in Sweden outperform passive investors (Dahlquist, Martinez, and
Söderlind 2012).
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2.8 The Evolutionary Success of Active Investing

We now describe conditions under which, overall, evolution favors A or P. The next proposi-

tion follows immediately by (18) and the parameter constraints of the model (βA > βP ≥ 0,

σ2
A > σ2

P , γ1A > 0, γ1P ≈ 0, and γ1r ≥ 0).

Proposition 2 If the return penalty to active trading D is sufficiently close to zero, then

under the parameter constraints of the model, on average the fraction of active investors

increases over time.

This comes from reinforcing effects. Owing to SET, the spread of A over P is favored

by parameter values that increase the volatility of A relative to P: higher factor loading βi

and idiosyncratic volatility σi. A strategy that is more volatile (either because of greater

loading on a factor or because of idiosyncratic risk) magnifies the effect of SET in persuading

receivers to the strategy. Furthermore, the greater idiosyncratic skewness of A, as reflected

by weakly higher γ1i, promotes the spread of A. Owing to greater attention to extremes

(a > 0), skewness (which generates salient and influential high returns) further reinforces

the success of A, but SET promotes the spread of A even if a = 0.

An additional direct effect which does not rely on SET further promotes the success of

A. This effect only operates if a > 0 (salience of extreme news). Starting as benchmark

with the case of a = 0, in the absence of SET (β = 0), and if the expected returns of

the two strategies are the same, the transformation of P investors to A resulting from

overextrapolation by receivers of high A returns is exactly offset by transformations in the

other direction when returns are low. So the expected change in the fraction of active

investors from a meeting is zero.18

However, if a > 0, the receiving function is convex, so that high returns have a stronger

effect on the upside than low returns have on the downside. Owing to the higher variance

of A, it generates extreme returns more often, which intensifies this favorable effect.

To see this algebraically, eliminate SET in the model by setting β = 0. Then the

expected change in frequency of A is, up to a multiplicative constant,

E[TAP (RA)− TPA(RP )] = aγ[(β2
A − β2

P )σ2
r + (σ2

A − σ2
P )] +D2aγ −Dbγ. (19)

Setting aside last two terms involving the mean return term D (which vanish when D ≈ 0),

we see that even without SET, there tends to be growth in the frequency of A if there is

18More generally, whichever strategy has higher mean return will, all else equal, tend to spread owing to
the persuasiveness of higher returns. However, in an equilibrium setting, growing popularity is self-limiting,
as it drives the price of the A strategy up and its expected return down.
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attention to extremes (a > 0). However, there is no inherent tendency for high skewness

strategies to spread. This can also be seen from the comparatives statics of equations (45)

and (46), in which the effects of skewness are eliminated when β = 0.

In summary, SET promotes A owing to its higher variance and (if a > 0), its higher

skewness; the attention to extremes effect (combined with extrapolation) promotes A only

when a > 0, and only via a variance effect, not a skewness effect.

Individual investors are probably relatively strongly influenced by social interactions

rather than independent analysis and investigation. This suggests that the predictions of

Propositions 2 and 3 that social interaction favors active investing will apply more strongly

to individual investors than to professionals.

2.8.1 Comparative Statics

To gain insights into the determinants of the reproductive success of A versus P strategies,

we describe comparative statics effects on the growth in the active population fraction.

Proposition 3 If D ≈ 0, then under the parameter constraints of the model, the per-

meeting expected change in the fraction of A, E[∆f ]:

1. Decreases with the return penalty to active trading D;

2. (a) Increases with factor skewness, γ1r;

(b) Increases with active idiosyncratic skewness, γ1A;

(c) The above effects are intensified by greater social interactions and by character-

istics of the sending and receiving functions such as salience of extreme returns

as reflected in a, and SET as reflected in β.

3. (a) Increases with active idiosyncratic volatility, σA;

(b) Increases with the factor loading of the active strategy, βA;

(c) Increases with the variance of the common factor, σ2
r ;

(d) The above effects are intensified by greater sociability as reflected in γ and by

other characteristics of the sending and receiving functions such as salience of

extreme returns as reflected in a, SET as reflected in β, and the extrapolativeness

of receivers as reflected in b.

4. Increases with SET, β;
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5. Increases with the extrapolativeness of receivers, b;

6. Increases with attention of receivers to extremes, a;

7. Increases with the conversability, γ, of trading strategies. If D > 0 sufficiently large,

then the expected rate of increase in the fraction of A decreases with the conversability;

8. Can either increase or decrease with the susceptibility of receivers, c; the relation is

increasing when D < 0 and decreasing if D > 0.

The predictions in Proposition 3 about conversion of types translate into predictions

about the popularity of the trading strategies adopted by A. For example, an increase in

the fraction of A results in greater demand for active investments. Based upon a simple

assumption about pricing—that the higher the demand for a security, the higher its price

and the lower its expected return, we can interpret the comparative statics from Proposi-

tion 3 as comparative statics on active investments and their expected returns. The proof of

these claims follows directly by differentiation, and is provided in Appendix B. We provide

intuitions for the effects in the rest of this subsection.

Part 1 makes the fairly obvious point that if the average return penalty D to active

trading is larger, A will be less successful in spreading through the population. Part 2a

asserts that the advantage of A over P is increasing with factor skewness. Intuitively,

extreme high returns are especially likely to be sent, to be noticed, and to convert the

receiver when noticed. Since A has a greater factor loading than P, factor skewness is

magnified in A relative to P, making A more contagious.

Part 2b on the effect of varying active idiosyncratic skewness, γ1A, implies that conver-

sation especially encourages demand for securities with high skewness. Mitton and Vorkink

(2007) and Goetzmann and Kumar (2008) document that underdiversified individual in-

vestors (presumably naive investors—whom we would expect to be most subject to social

influence) tend to choose stocks with high skewness—especially idiosyncratic skewness. Ex-

amples of skewed securities include options, and ‘lottery stocks’, such as real option firms

that have a small chance of a jackpot outcome. As more investors favor positively skewed

stocks, the expected returns of such stocks in the future would be depressed. This is con-

sistent with the empirical finding that ex ante return skewness is a negative predictor of

future stock returns (Conrad, Dittmar, and Ghysels 2013; ?).19

19There is also evidence from initial public offerings (Green and Hwang 2012) and general samples (Bali,
Cakici, and Whitelaw 2011) that lottery stocks are overpriced, and that being distressed (a characteristic
that leads to a lottery payoff distribution) on average predicts negative abnormal returns (Campbell,
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The implications of the theory for the attraction of individual investors to lottery stocks

are among this paper’s key contributions. Existing explanations for this phenomenon have

focused solely on inherent nontraditional preferences. In Brunnermeier and Parker (2005),

agents who optimize over beliefs prefer skewed payoff distributions. In Barberis and Huang

(2008), prospect theory preferences with probability weighting creates a preference over

portfolio skewness, which induces a demand for ‘lottery’ (high idiosyncratic skewness)

stocks that contribute to portfolio skewness. Surprisingly, we find that attraction to lottery

stocks can instead derive from biases in the process of social interaction.

Existing preference-based theories are highly plausible, but there are indications that

the tendency to favor lottery stocks does not derive solely from hard-wired psychological

biases. Consistent with a possible effect of social contagion, individuals who live in urban

areas buy lottery tickets more frequently than individuals who live in rural areas (Kallick et

al. (1979)). Furthermore, there is evidence suggesting that the preference for high skewness

stocks is greater among urban investors, after controlling for demographic, geographic, and

personal investing characteristics (Kumar 2009).20

Furthermore, investment in lottery-type stocks depends on the socioeconomic envi-

ronment such as religion (Kumar 2009), a cultural trait that is adopted through social

interaction. Our approach offers a different pathway by which social interaction affects

lottery choices—one that involves direct adoption of investment strategies rather than the

lower-frequency social transmission of religious beliefs.

A key difference of our approach from approaches based upon inherent preferences

over beliefs or over portfolio skewness is that biases in the transmission process cause the

purchase of lottery stocks to be contagious. This can help explain the empirical association

of high social interaction with gambling and lottery behaviors. In our setting, greater social

interaction increases contagion, thereby increasing the holdings of lottery stocks.21 For

example, individuals with greater social connection (as proxied, for example, by population

density, participation in investment clubs, or self-reports of interactions with neighbors or

regular church-going) will favor such investments more.

Hilscher, and Szilagyi 2008). Boyer and Vorkink (2014) find that the ex ante skewness of equity options is
a negative cross-sectional predictor of option abnormal returns.

20Kumar (2009) empirically defines lottery stocks as stocks with high skewness, high volatility, and low
price, so his findings do not distinguish the effects of skewness versus volatility.

21In particular, when A means higher skewness, we find that having social interaction results in the spread
of A, i.e., E[∆f ] > 0, whereas if there were no social interaction we would have E[∆f ] = 0. Alternatively,
if greater social interaction is interpreted to mean more frequent meetings in calendar time, then positive
expected change in f that derives from positive skewness is realized more often per unit time.
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Barber and Odean (2008) find that individual investors are net buyers of stocks following

extreme price moves, but that institutional investors behave in opposite fashion. So if

naive individual investors are more affected by the salience of extreme returns, this would

reinforce the attraction of individual investors to high skewness, as predicted by Part 2c.

Part 3a implies that there is greater investor demand for more volatile stocks. Consistent

with Part 3a, Goetzmann and Kumar (2008) document that underdiversified investors

prefer stocks that are more volatile. A further empirical implication of Part 3a is that in

periods in which individual stocks have high idiosyncratic volatility, all else equal there

will be greater holding of and volume of trade in individual stocks. Intuitively, during such

periods As have higher returns to report selectively. This implication is in sharp contrast

with the prediction of portfolio theory, which suggests that in periods of high idiosyncratic

volatility, the gains to holding a diversified portfolio rather than trading individual stocks

is especially large. Tests of this prediction, especially if a shift in idiosyncratic volatility

can be attributed to fundamentals, would therefore distinguish competing theories.

The greater demand of investors for a higher-volatility stock implies that it will have

a higher price, depressing its expected return. This is consistent with the idiosyncratic

volatility puzzle that stocks with high idiosyncratic risk earn low subsequent returns (Ang

et al. (2006, 2009)). This apparent overpricing is stronger for firms held or traded more

heavily by retail investors (Jiang, Xu, and Yao 2009; Han and Kumar 2013), for whom we

would expect conversational biases to be strong. Thus, the theory offers a possible social

explanation for the idiosyncratic volatility puzzle: the high returns generated by volatile

stocks are heavily discussed, which increases the demand for such stocks, driving up their

prices.

A plausible individual-level explanation for these findings is that realization utility or

prospect theory with probability weighting creates a preference for volatile portfolios and

stocks (Barberis and Huang 2008; Boyer, Mitton, and Vorkink 2010). However, a distinctive

aspect of our explanation is that the effect derives from social interaction. Consistent with

social contagion playing a role, in tests using extensive controls, the preference for high

volatility is greater among urban investors (Kumar (2009); see also footnote 20).

Part 3b implies that there is higher demand for high-beta stocks, pushing their price up-

ward (and thereby depressing their expected returns). This is consistent with the anomaly

that high beta stocks underperform and low beta stocks overperform (Baker, Bradley, and

Wurgler 2011; Frazzini and Pedersen 2014). Frazzini and Pedersen (2014) propose a ratio-

nal explanation of this effect based on borrowing leverage constraints. However, Bali et al.

(2016) provide evidence favoring a behavioral explanation based on naive demand for stock
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with lottery characteristics. When beta-sorted portfolios are constructed to be neutral to

lottery demand, the beta anomaly is no longer detected. Our model provides a channel for

investors’ demand for lottery-like stocks. Bali et al. (2016) also document that the beta

anomaly occurs only in stocks with low levels of institutional ownership, consistent with a

relatively naive investor base. This is consistent with our approach, since we expect naive

investors to be more subject to SET (as reflected in β), and the comparative statics in

(48) is stronger for larger β.

Part 3c suggests that greater volatility, σr of the common factor favors the spread of A.

Greater factor volatility outcomes encourages the spread of the strategy with the greater

loading, A, by creating greater scope for SET to operate. This implies that all else equal,

there will be greater stock market participation in time periods and countries with more

volatile stock markets. This contrasts with the conventional theory, in which greater risk,

ceteris paribus reduces the benefit to participation.

Part 3d highlights a distinctive set of empirical implications, that demand for stocks

with high beta or high idiosyncratic volatility will be strengthened by greater sociability

as reflected in γ, and by other social psychological factors reflected in other parameters

of the sending and receiving functions. These include the salience of extreme returns as

reflected in a, SET as reflected in β, and the extrapolativeness of receivers as reflected in

b. Such parameters are empirically measurable. For example, Barber and Odean (2008)

estimate the effects of investor attention to extreme returns, and several papers estimate

the extrapolativeness of return expectations using both survey approaches (Case and Shiller

1988; DeBondt 1993; Vissing-Jorgensen 2003) and field evidence (Greenwood and Shleifer

2014; Hoffmann, Post, and Pennings 2015).

Proposition 3 also suggests direct effects of various characteristics of the social trans-

mission process and the evolution toward A. First, in the Part 4 comparative statics on

β, greater SET increases the evolution toward A, because SET causes greater reporting of

the high returns that make A enticing for receivers. A generates extreme returns for SET

to operate upon through higher factor loading, idiosyncratic volatility, or more positive

idiosyncratic skewness. The link between performance and self-esteem could be estimated

empirically using psychometric testing.

Second, in the Part 5 comparative statics on b, greater extrapolativeness of receivers

helps A spread by magnifying the effect of SET. This suggests that active investing will

be more popular when extrapolative beliefs are stronger (past returns are perceived to be

more informative about the future); as mentioned above, extrapolativeness can be estimated

empirically to test this hypothesis.
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Third, in the Part 6 comparative statics on a, greater attention by receivers to extreme

outcomes, tends to promote the spread of A over P because A generates more of the extreme

returns which, when a is high, are especially noticed and more likely to persuade receivers.

This effect is reinforced by SET, which causes greater reporting of extreme high returns.

Fourth, in the Part 7 comparative statics on γ, greater conversability can help the

active strategy spread because of the greater attention paid by receivers to extreme returns

(a > 0), which are more often generated by the A strategy. This is consistent with the

idea that active trading will tend to become more popular when people become more

talkative about their investment performance. Examples include the rise of communication

technologies, media, and such social phenomena as ubiquitous computing, stock market

chat rooms, investment clubs, and blogging. This raises the possibility that the rise of

these phenomena (if taken to be exogenous) may have contributed to the internet bubble.

Also, trading outcomes are a trigger for conversation about trading, so over time as

markets become more liquid and trading becomes more frequent, we expect conversation

about outcomes to become more frequent. The trend toward greater availability of real-

time reporting and discussion of financial markets on television and through the internet

therefore can induce more rapid evolution toward more active investing.

If greater general sociability is associated with greater comfort in discussing performance

information, then in any given conversation it increases the unconditional probability that

the sender will discuss returns; i.e., it increases γ. So again, if the expected return of A is

not too low, this will increase evolution toward active trading. Empirically, participation

in online communities has been found to be associated with riskier financial decisions

(Zhu et al. (2012)). Using field studies, the authors found greater risk-taking in bidding

decisions and lending decisions by participants in discussion forums (Prosper.com) and in

discussion boards and chat rooms (eBay.de), and that risk-taking increases with how active

the participants are in the community.

There is also survey evidence that sociability is associated with greater stock market

participation (Hong, Kubik, and Stein 2004). Similarly, survey evidence from ten European

countries indicates that household involvement in social activities is associated with greater

stock market participation (Georgarakos and Pasini 2011). Furthermore, Heimer (2014)

documents that social interaction is more prevalent amongst active investors who buy

and/or sell stocks than passive investors who hold U.S. savings bonds, thereby supporting

our explanation for the active investing puzzle in which informal communication tends to

promote active rather than passive strategies.
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As discussed earlier, another reasonable way to interpret the active versus passive

distinction is that active strategies are more conversable (less conventional, more affect-

triggering, or more arousing). (As documented by Berger and Milkman (2012), more

arousing online content is more viral.) This distinction could be incorporated formally by

replacing γ in the sending function with γA and γP , where γA > γP . However, the model

generates a survival advantage for A even without a conversability advantage. It is imme-

diately evident that γA > γP favors the spread of A, since a receiver cannot be converted

unless he receives a message from the sender. Intuitively, γA > γP , ceteris paribus, causes

adopters of A to evangelize to P’s more often than the other way of around, which favors

evolution of the population toward A. So we simply assert this conclusion while maintaining

the simplicity of a single γ for the remaining analysis.

Since strategy A is more overpriced when the frequency of A in the population is higher,

with γA > γP , the model further implies that there will be overvaluation of stocks with

‘glamour’ characteristics that make them attractive topics of conversation. Such character-

istics include growth, recent IPO, sports, entertainment, media, and innovative consumer

products (on growth, see Lakonishok, Shleifer, and Vishny (1994); underperformance of IPO

and small growth firms, see Loughran and Ritter (1995) and Fama and French (1993)). In

contrast, there will be neglect and underpricing of unglamourous firms that are less at-

tractive topics of conversation, such as business-to-business vendors or suppliers of infras-

tructure. Conversational transmission biases can therefore help explain several well known

empirical puzzles about investor trading and asset pricing.

Related predictions about the effects of investor attention have been made before (Mer-

ton 1987). A distinctive feature of our theory is that the effects derive from social inter-

action, and should therefore be stronger in times and places with stronger interactions.

This point provides additional empirical predictions about the effects on trading and re-

turn anomalies of population density, urban versus rural localities, pre- and post-internet

periods, differences in self-reported degrees of social engagement, popularity of investment

clubs and chat rooms, and so forth.

Lastly, the comparative statics on c in Part 8 of Proposition 3 implies that when there

is a stronger pressure toward conformity (hence, more susceptible receivers), there is a

stronger tendency for the culture to evolve toward A. Different ethnic and religious groups

differ greatly in their exclusivity and the extent to which they place conformist pressures

upon members (as reflected, for example, in the theory of club goods and religion; Iyer

(2015)). The degree of ethnic or religious homogeneity is also likely to affect conformist

pressures. So this implication is empirically testable using demographic data.
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The comparative statics of Proposition 3 describe the effects of parameter shifts on

the expected shift in the fraction of As over a single period. In Subsection 2.9 we derive

similar comparative statics implications for the population dynamics over time, taking the

continuous time limit as periods become short.

2.8.2 An Alternative Specification for the Receiving Function

We have assumed throughout that a receiver is influenced only by the sender’s return, not

own return. This assumption may seem unrealistic, but should matter little for qualitative

conclusions, as each type has an equal chance of becoming the sender.

As a robustness check, we examine here an alternative specification where the receiving

function depends on the difference between the returns of the sender and the receiver.

Specifically, we now assume that when a sender of type A meets with a receiver of type

P and communicates return RA, P is converted to type A with probability rAP (RA) =

a(RA −RP )2 + b(RA −RP ) + c. We have verified that Propositions 1, 3 (except for Part 7

on the effect of conversability), and Proposition 2 remain valid when the receiving function

depends on the return difference between the sender and the receiver.

In the model, investors decide whether to switch strategy based only on the most recent

period’s return. In principle, fully rational investors could eventually converge to the best

action by observing a long history of returns. This could take a long time since strategy

return realizations are noisy indicators about which strategy is better. Meanwhile, new

investors are continually arriving and experienced investors departing. Our model captures

this in an extreme way by allowing investors to retain return messages for only single period.

Also, when the sending and the receiving function depend on returns over multiple past

periods, as discussed in the concluding section, boom-bust dynamics are possible.

2.9 Implications for Population Dynamics

Proposition 3 provides implications about the expected change in the fraction of active

investors over the next transaction. We now study the dynamics over extended periods of

the prevalence of A in the population. In particular, we perform comparative statics for

the level of expected frequency of active investors in the population at any given future

time.

We maintain the previous model assumptions, with the following modifications. For

technical tractability, we assume an infinitely large population of investors meeting over

time intervals of arbitrarily short length. Furthermore, we assume that the common factor
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return follows a standard Gaussian diffusion process. By the law of large numbers, the

randomness at the individual level caused by the matching and individual-specific return

components average out. Randomness remains, however, owing to the common factor in

returns. These assumptions enable us to derive continuous-time dynamics for the frequency

of active investors in the population, resulting in the following comparative statics.

The results are stated in the following Proposition, which is proved in Appendix C.

Proposition 4 Under the parameter constraints of the model (and for Part 5, under the

further assumption that c = 0), for any given time t > 0, the expected population frequency

of A, E[f ]:

1. Decreases with the return penalty to active trading D;

2. Increases with active idiosyncratic skewness, γ1A;

3. Increases with active idiosyncratic volatility, σA;

4. Increases with attention of receivers to extremes, a;

5. Increases with SET, β.

The proof is based upon the nonlinear stochastic differential equation that describes

the evolution of ft in continuous time (see (58) in Appendix C). This resembles (but is

more complicated than) the logistic growth equation in population ecology or innovation

diffusion in social sciences. An analytical solution for E[ft] is unavailable, but we apply a

stochastic dominance argument to prove comparative statics for the five model parameters

in Proposition 4. These are consistent with those of Proposition 3.22

3 Equilibrium Trading and Returns

So far, we have viewed active investing as referring to either some static action such as

holding a given risky asset, or to a dynamic trading strategy. Under a general but exoge-

nously specified factor model for the returns of strategies A and P, we derive a rich set

of implications about the spread of active investing. We now model A more specifically

22For technical reasons, our proof approach does not apply to the other parameters. But we have verified
numerically that the comparative statics of E[ft] with respect to other model parameters are also similar
to those in Proposition 3. To evaluate E[ft] numerically, we discretize the stochastic differential equation
(58), simulate 1,000 paths for the evolution of the fraction of A in the population from time 0 to t, and
average the ending values ft across the simulations.
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as referring to placing a higher valuation than P upon a risky asset, which allows us to

solve for optimal positions and market equilibrium. Using this specification, we verify that

the intuitions derived from the partial equilibrium model extend to an equilibrium setting,

with a few further technical nuances.

An advantage of the equilibrium setting is that it captures the self-limiting feature of

evolution toward a strategy, as buying of the strategy drives its price up and its expected

return down. So we expect a balanced frequency of A and P between zero and one. In

the next subsection, we consider the case of a single risky asset. This lays the groundwork

for Subsection 3.2, in which there are many risky assets, which simplifies the analysis of

population dynamics.

3.1 Active and Passive Returns

Each period each investor is newly endowed with one unit of the riskfree numeraire to

invest fully in a risky asset and a riskfree asset, each of which generates a terminal value

one period later and liquidates. Investors consume the payoffs of these assets. They are

given a new endowment of the numeraire and a new risky asset appears next period. A

new realized terminal value is redrawn independently each period, and investors myopically

optimize each period based upon their current beliefs. We nomralize the total supply of

risky asset to be one share and the riskfree rate of return to be zero.

The risky asset S generates a terminal value VS one period later that is normally

distributed with mean V̄S and variance σ2
S. Both A and P types correctly understand

the variance of risky asset payoff, but type A overestimate the mean payoff. We distinguish

agent expectations, denoted by Ei[−] (i = A,P ) or ‘bar’ variables with subscripts, from

true expectations, denoted by unscripted E[−]. Type Ps hold the objective belief about

the mean payoff, so V SP = V S. Type As optimistically perceive a higher expected payoff

V SA. Denote the degree of optimism of a type A investor by a constant parameter κ =

V SA/V S − 1 > 0.

Letting p be the price per share of the risky asset, wA and wP be the share holdings in

the risky asset by each type, next period’s portfolio payoff achieved by an A or P are

VA = (1− wAp) + wAVS

VP = (1− wPp) + wPVS. (20)

The investors’ mean-variance decision problem is

max
wi

Ei[Vi]−
(ν

2

)
var(Vi), i = A,P, (21)
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where ν is the coefficient of absolute risk aversion.23 Optimal holdings are

wi =
V Si − p
νσ2

S

, i = A,P, (22)

so the As, as optimists, invest more in the risky asset. Substituting for the w’s in (20)

using (22) gives

VA = λVP + (1− λ), (23)

where

λ ≡ wA
wP

=
V SA − p
V S − p

. (24)

Since the Ps are less optimistic, they view the risky asset as overpriced, so wP < wA. So

the portfolio payoff that an A investor chooses is a leveraged multiple—possibly with a

negative coefficient—of that faced by the Ps.

It follows by (23) and (24) that

VA = λVP + (1− λ)E[VP ]−D

where by (20)

D
def
= (1− λ) (E[VP ]− 1) = wP (1− λ)(V S − p). (25)

Taking the expectation of both sides of (25), we see that D is the expected penalty to

active trading, in analogy with equation (15) of the basic model. In (24), since As are more

optimistic than Ps about the risky asset, either λ > 1 or λ < 0. If the risky asset is not

too overpriced, it will earn a positive risk premium (i.e., V S − p > 0), implying λ > 1. It

follows that D < 0, a negative penalty to active trading. If the risky asset is sufficiently

overpriced that V S − p < 0, then λ < 0 and D > 0.

3.2 Market Equilibrium

We solve the equilibrium price by market clearing for the risky asset:

fwA + (1− f)wP = 1, (26)

23Both types correctly asset higher moments, but we assume mean-variance preferences, so higher mo-
ments do not affect their decisions. A conventional justification for mean-variance preferences comes from
the combination of normal distributions and CARA preferences. We instead assume mean-variance pref-
erences as a primitive, and allow for skewed distributions. Skewness is important for the a periods, as it
affects the expected shift in the frequencies of A versus P types.
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which give the following price of the risky asset

p = fV SA + (1− f)V SP − νσ2
S = (1 + fκ)V S − νσ2

S. (27)

By (27), type A and P investors perceive the return of the risky asset RS
def
= VS − p to

have an expected value of

EA[VS − p] = V SA − p = (1− f)κV S + νσ2
S, (28)

and

EP [VS − p] = V SP − p = −fκV S + νσ2
S. (29)

Type As always perceive positive expected return to holding the risky asset, but depending

upon parameter values R̄SP can be either positive or negative. Since the risky asset is in

positive net supply, there is aggregate risk from holding it. So the Ps may still regard it as

commanding a positive expected return premium as long as the As are not too optimistic,

which would drive the price too high. Specifically, by (22) and (29), wP
>
< 0 are both

possible.

3.3 Evolutionary Dynamics and the Stable Fraction of Active
Investors

To derive the dynamics of the fraction of As, we now allow for many ex ante identical stocks

with independent normal returns. The analysis can be viewed as providing an equilibrium

foundation for the partial equilibrium model of earlier sections, for the special case of the

return assumptions in (15) where there is no factor risk (βA = βP = 0) and zero skewness

(γ1r = γ1A = γ1P = 0). We also set the parameter a for the nonlinear term in the receiving

function to zero (i.e., we eliminate the special salience of extreme news).24

Models in evolutionary game theory often assume an infinitely large population of in-

teracting agents, usually represented as a continuum. These models often assign revision

protocols to agents describing how their behaviors change in response to their experiences.

Based on these protocols such models typically derive deterministic evolutionary dynam-

ics for the system, in the form of differential or difference equations for population shares

(Sandholm 2010). Changes in the strategy shares in the population are viewed as averages

over large numbers of individual strategy switches.

24The parameter a was only needed for the model’s skewness predictions, but the return distributions
in this section are Gaussian. Allowing for a > 0 makes expressions more cumbersome without additional
insight. We have verified that Proposition 5 still holds when a > 0.
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In this approach, randomness at the individual level is caused by the matching and the

switching processes. In our model, there is an additional source of randomness: the payoffs

of the strategies. In this section we assume that the risks of the stocks held by different

individuals are diversifiable, so that the system still evolves deterministically.

Each individual holds only one stock, each of which is held by many investors. The

optimization problem of any given A or P investor in any given stock is precisely identical

to that in the single-security model analyzed earlier. The independence across stocks implies

that the payoffs to A and P are independent across investors who trade in different stocks.

Each period, many pairs of individuals who have traded in different stocks are randomly

selected for social interactions. With many stocks and many investors per stock, random

fluctuations in returns and the randomness of the pairings (AP, PA,AA, PP ) are diversified

away, so by the law of large numbers the fraction converting to A evolves deterministically.

Specifically, there are N = nm investors, m risky assets (stocks) with identical and

independently distributed payoffs, and each stock has n investors, where we will take the

limit as m but not n becomes large. During each period, each investor holds only one stock,

along with the riskfree asset. The assumption that investors are imperfectly diversified is

in the spirit of theories of limited investor information processing in which investors hold

only subsets of available assets (Merton 1987); we take this to an extreme for simplicity.

In each period t, a fraction ft of the investors in each stock are active, meaning that each

investor holds overly optimistic belief V A about the mean payoff of the stock the investor

trades. The P investors in each stock hold the correct belief V . Assuming that the As are

mistaken tilts the model against the spread of A, but we will see that A still survives. Each

period investors are randomly assigned to stocks such that the fraction of A investors in

each stock is equal.

Under these assumptions, we can analyze equilibrium trading in each stock indepen-

dently based on that stock’s investor base, so we omit notation to identify the specific stock.

As before, risky assets start anew each period, so there is no repeated learning about the

prospects of a given asset. In addition, investors do not draw inferences from price when

forming demand for risky assets.

Since stocks payoffs are independent and the investor bases of different stocks do not

overlap, at each time t the analysis of market equilibrium is, stock by stock, identical to

that in Sections 3.1 and 3.2. By (27), the equilibrium price, p, of each stock increases with

the fraction f of A investors in the population:

pt = (1 + ftκ)V S − νσ2
S. (30)
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This implies that the true equilibrium expected return E[RS] decreases with the fraction

f of A investors:

Et[RS] = V S − pt = −ftκV S + νσ2
S. (31)

By (22), (28) and (29), the optimal share holdings wA and wP also decrease with the

fraction f of A investors in the population:

wAt =
(1− ft)κV S + νσ2

S

νσ2
S

(32)

wPt =
−ftκV S + νσ2

S

νσ2
S

, (33)

where the quantities above are the same for all stocks.

Each period, one investor from each stock is randomly selected, and investors are ran-

domly paired off (with one left over if m is odd), so the members of each pair are investors

in different stocks. When m and therefore N = mn is large, in each drawing the proba-

bility that a mixed pair is drawn (one A, one P) is arbitrarily close to 2ft(1 − ft). In the

next period, anyone who is converted to A becomes optimistic about whatever stock he is

assigned to, and anyone who is converted to P acquires objective beliefs about whatever

stock he is assigned to.

So at date t, there are m/2 meetings of pairs of individuals. Let the meetings be

indexed by j. In a given mixed-type meeting j, the returns experienced by the A and the

P individuals are (suppressing t subscripts on return variables)

RAj = wAtRSAj, RPj = wPtRSPj. (34)

The sending and receiving functions are as in Section 2. So after m/2 meetings of pairs at

date t, by (10) the change in the population frequency of A is

ft+1 − ft =
( χt

2N

) m
2∑
j=1

TAP (RSAj)− TPA(RSPj)

=
( χt

2N

) m
2∑
j=1

B
(
R2
SAj −R2

SPj

)
+ C(RSAj −RSPj),

where B = bβ and C = bγ + cβ. Substituting equation (34) into the above gives

ft+1 − ft =
(χt

2

) 1

N

m
2∑
j=1

B(w2
AtR

2
SAj − w2

PtR
2
SPj) + C(wAtRSAj − wPtRSPj).
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Letting m and population size N = nm approach infinity with n held fixed, we obtain a

deterministic dynamic for the fraction of As. Since stock returns are i.i.d., applying the law

of large numbers to the summation on the right hand side of the equation above, each term

being averaged can be replaced with its expectation. So the dynamic for the population

frequency of A becomes

ft+1 − ft
ft(1− ft)

=
1

2n
(wAt − wPt){B(wAt + wPt)[(Et[RS])2 + σ2

S] + CEt(RS)}, (35)

where Et[RS] is given in (33). By (32) and (33), wAt−wPt is independent of ft and wAt+wPt

is a decreasing function of ft:

wAt − wPt =
κV S

νσ2
S

(36)

wAt + wPt =
(1− 2ft)κV S + 2νσ2

S

νσ2
S

. (37)

By (35), the net conversion rate from P to A, (ft+1 − ft)/ft, is a decreasing function

of ft. Specifically, it is the product of 1 − ft and the right hand side of (35), which is a

decreasing function of ft, since wAt + wPt and Et(RS) both decrease with ft.

When f is small, the stocks have positive expected return premia, which means that

strategy A earns high expected returns relative to P, i.e., D < 0. In this circumstance,

other investors tend to convert to A (becoming optimistic) as they hear about the high

returns experienced using A. However, as the fraction of As becomes sufficiently large, the

expected return premium on the risky asset declines or even turns negative, which limits

the spread of A.

So long as the optimistic belief is not too extreme (κV S < νσ2
S) so that E[RS] is positive,

the right hand side of (35) is also positive, regardless of f (0 ≤ f ≤ 1). Thus, owing to

SET, the fraction of A increases indefinitely, and type A dominates the population.

However, if the As have sufficiently optimistic beliefs, then as f grows, the risky assets

become highly overpriced, driving E[RS] negative. This results in an expected return

penalty to A. As the actual and reported returns on A diminish, so does the net conversion

rate from P to A, which becomes negative when the fraction f of active investors becomes

too large. So when the A belief is sufficiently optimistic, there exists a stable fraction

f ∗ ∈ (0, 1) of type A such that if f = f ∗, the net conversion rate from P to A is zero; if

f < f ∗, ∆f > 0; and if f > f ∗, ∆f < 0.

The interior stable fraction adopting A reflects a balance between two forces. On the

one hand, owing to the combination of SET and an upward sloping receiving schedule,
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A tends to spread. On the other hand, as overoptimism becomes more prevalent, risky

securities become overpriced, and therefore tend to generate lower returns. Such returns

do not attract emulation by receivers.

By equation (35) and the fact that wAt−wPt given in (36) is always positive, the stable

fraction f ∗ satisfies H(f ∗) = 0, where

H(f) ≡ B(wAt + wPt)[(Et[RS])2 + σ2
S] + CEt(RS). (38)

Substituting (31)-(33) into the above, H(f ∗) = 0 can be equivalently written as G(f ∗) = 0,

where

G(f) ≡ B[(1− 2f)κV S + 2νσ2
S][(νσ2

S − fκV S)2 + σ2
S] + C(νσ2

S − fκV S). (39)

G is a cubic polynomial in f , with G(0) > 0. When the As have sufficiently optimistic

beliefs κ > 2νσ2
S/V S, or equivalently, when V A > V S + 2νσ2

S, then G(1) < 0, and the

discriminant of G is negative. It follows that there exists a unique f ∗ ∈ (0, 1) satisfying

G(f ∗) = 0.

The expected return premium on the risky assets at the stable fraction f ∗ must be neg-

ative, because the net conversion from P to A is still positive when E[RS] = 0. Intuitively,

SET would cause conversion to A until everyone adopts A, unless A has an offsetting ad-

verse effect on expected returns that opposes such conversion. We summarize these results

as follows.

Proposition 5 If the type A investors are sufficiently optimistic,

V A > V S + 2νσ2
S,

then there exists a stable fraction f ∗ ∈ (0, 1), such that ∆f > 0 for f < f ∗, and ∆f < 0 for

f > f ∗. Corresponding to f ∗, the expected return premium on the risky asset is negative.

Since the stable fraction f ∗ of A satisfies H(f ∗) = 0, we can use (38) to calculate how f ∗

varies with key model parameters. It is straightforward to verify that

∂H

∂f
< 0,

∂H

∂β
> 0,

∂H

∂b
> 0,

∂H

∂c
< 0,

∂H

∂γ
< 0. (40)

The first inequality in (40) derives from the fact that E[RS] decreases with the fraction

of As. The greater the fraction of As, the more that stocks are overpriced, and the lower

the expected return. To derive the second and the third inequalities, we substitute the

equilibrium relation that holds at the stable fraction f ∗,

bβ(wAt + wPt)[(Et[RS])2 + σ2
S] + (bγ + cβ)Et(RS) = 0,
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into the following partial derivatives:

∂H

∂β

∣∣∣
f=f∗

= b(wAt + wPt)[(Et[RS])2 + σ2
S] + cEt(RS) = −bγEt(RS)

β

∂H

∂b

∣∣∣
f=f∗

= β(wAt + wPt)[(Et[RS])2 + σ2
S] + γEt(RS) = −cβEt(RS)

b
.

The second and the third inequalities in (40) then result from the fact that the expected

return on the risky asset is negative at the stable fraction of As. This fact also underlies

the last two inequalities in (40), since

∂H

∂c
= βEt(RS)

∂H

∂γ
= bEt(RS).

Applying the implicit function theorem to H(f ∗) = 0, where H is given by (50), using

the inequalities in (40) gives

∂f ∗

∂β
> 0,

∂f ∗

∂b
> 0,

∂f ∗

∂c
< 0,

∂f ∗

∂γ
< 0. (41)

We therefore have:

Proposition 6 If the type A investors are sufficiently optimistic (V A > V (2νσ2
S)/(1 −

νσ2
S)), the stable fraction f ∗ of A increases with SET, β, and the tendency of receivers to

extrapolate returns, b, decreases with conversability γ, and receiver susceptibility, c.

The comparative statics in Proposition 6 for β and b are consistent with Proposition 3

Parts 4 and 5 respectively. The results for γ and c in Proposition 6 agree with Part 7 and

Part 8 of Proposition 3 in the case of a positive penalty to active trading (i.e., D > 0).

According to Proposition 5, the equilibrium expected return of the risky asset is negative

at the stable fraction f ∗ of A. This implies a positive penalty to active trading D > 0 (see

Section 3.1). Part 7 and Part 8 of Proposition 3 allow for the comparative statics for γ and

c to go in either direction depending on which strategy has higher expected return. The

equilibrium condition in this section pins these predictions down to the negative direction

by showing that P has higher expected return.

Intuitively, greater susceptibility, c, helps transform the receiver only if the sender

actually sends. In equilibrium A earns lower expected return than P (i.e., D > 0); owing

to SET, this reduces the sending probability by type A relative to P, which reduces the
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probability that the receiver is converted. Thus, in the equilibrium setting, the stable

fraction f ∗ of A decreases with c.

Furthermore, since A earns lower expected return than P, greater conversability γ works

against the spread of A. In this case, greater conversability increases the reporting of returns

that tend to be higher for P than for A. So in the equilibrium setting, the stable fraction

f ∗ of A decreases with γ.

This is consistent with the conclusion of the partial equilibrium setting with a = 0 and

D > 0. In the partial equilibrium setting, an opposing channel that helps A spread is the

high salience of extreme returns, a > 0. As a result, higher conversability helps A exploit

its extreme returns, causing it to spread more. However, in the equilibrium setting, we set

a = 0, which eliminates this effect.

Also, as mentioned in Section 2.8.1, it is plausible that in most contexts conversability

is greater for A than for P, γA > γP . In that case, intuitively we expect that an exogenous

shift that promotes conversation, such as an increase in sociability, will tend to have a

relatively strong effect on reporting of A, thereby promoting its spread.25

We do not wish to emphasize unduly the model implication that in equilibrium A

has lower expected return than P (and associated comparative statics), because under a

reasonable alternative assumption, this implication can be reversed. So far our model has

assumed that the susceptibility of receivers, c, is the same regardless of whether the sender

was an A or a P, so that the probability that a receiver is converted depends only on the

sender’s return. However, it is possible that a receiver who recognizes that A is riskier

than P will be less willing to convert, for any given return, if the report came from an

A. For example, a report of a 4% annual return might be much more attractive if it is

about a riskfree asset than about a risky tech IPO. So we would expect receivers to be

less susceptible to messages that come from an A. This would be reflected by having the

receiver susceptibility parameter c in the receiving function be lower if the sender was an

A than a P, cSA < cSP .

All the asset pricing equations in Sections 3.1 and 3.2 continue to hold when the receiver

susceptibility parameter depends on the sender type. Under this assumption, upon deriving

the dynamic for the population frequency of A, solving for the stable frequency f ∗, and

imposing reasonable parameter constraints, it is easy to show that when the difference in

susceptibility is sufficiently large, the expected return premium on the risky assets at the

stable fraction f ∗ is positive. Intuitively, a lower receiver susceptibility for messages from

25This point operates unambiguously in an extended model in which senders sometimes tell receivers
about their strategy—its existence and logic—without mentioning performance.

35



A handicaps A in spreading through the population, which accommodates a positive risk

premium. The detailed derivation is contained in Appendix D.

In particular, when cSA < cSP , the effect of SET, which favors spread of A, is opposed

by the lower susceptibility of receivers to messages from As. If the handicap is large enough,

the population dynamic has a stable frequency in which the net conversion from P to A

becomes zero, even though the equilibrium expected return of the risky assets is positive.

In such an equilibrium A earns a higher risk premium than P. This would affect the γ

comparative statics since, as mentioned earlier, the intuition for the γ comparative statics

depends on which strategy has higher expected return.

In summary, the comparative statics in the equilibrium setting for the stable fraction

of As in the population are similar to those derived in the partial equilibrium setting

Section 2.8.1 for the expected change in this fraction.

4 Concluding Remarks

We argue that success in the struggle for survival between investment strategies is de-

termined by sending and receiving functions for the transmission of information about

the strategies and their performance. In the model, owing to self-enhancing transmission,

senders’ propensity to communicate their returns is increasing in sender return. Further-

more, owing to naive extrapolation, the propensity of receivers to be converted is also

increasing in sender return. Owing to the salience of extremes, the propensity of receivers

to attend to and be converted by the sender is convex in sender return. These shapes of the

sending and receiving functions describe the social transmission process. The parameters

of the sending and receiving function are influenced by the intensity of social interactions,

and by the psychological processes that underlie how a sender’s return performance is com-

municated and how it influences a receiver. We find that active strategies—those with high

volatility, skewness, and personal engagement, spread after they experience high returns,

and, more surprisingly, that this relationship is convex. We further find that the active

strategies on average tend to spread through the population until limited by high price,

resulting in return anomalies. Again, these effects depend on empirically observable pa-

rameters of the social transmission process, leading to a rich set of additional empirical

impications.

More generally, we suggest that a fruitful direction for understanding how social inter-

actions affect financial decisions is to study the factors that shape the sending and receiving

functions, i.e., that cause an investor to talk about an investment idea, or to be receptive to
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such an idea upon hearing about it, as a function of the strategy return experienced by the

sender. Conversations are influenced by chance circumstances, subtle cues, and even trifling

costs and benefits to the transactors. This suggests that small variations in social environ-

ment can have large effects on economic outcomes. For example, the model suggests that

a shift in the social acceptability of talking about one’s successes, or of discussing personal

investments more generally, can have large effects on risk taking and active investing.

Much of the empirical literature on social interactions in investment focuses on whether

information or behaviors are transmitted, and on what affects the strength of social con-

tagion. Our approach suggests that it is also valuable to measure how biases in the trans-

mission process affect the relative success of different kinds of behaviors.

Our approach also offers a microfoundation for research on fluctuations in investor

sentiment toward different kinds of investment strategies. For example, observers have

often argued that social interactions contribute to bubbles. Notably, the millennial high-

tech stock market boom coincided with the rise of investment clubs and chat rooms. If

the sending and the receiving functions of our model depend on the sender’s return over

multiple periods (rather than just the most recent period return), there can be overshooting

and correction. Alternatively, if a higher frequency of active investors makes it more socially

acceptable to discuss one’s investment successes, the popularity of active strategies will be

self-reinforcing. So our model, and more generally the social finance approach, offers a

possible framework for modeling how the spread of investment ideas cause bubbles and

crashes.
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Appendices

A Endogenizing the Sending Function

We now consider explicitly the determinants of the sending function, and derive the assumed

functional form endogenously. To derive a sending function that reflects the desire to self-

enhance, we assume that the utility derived from sending is increasing with own-return.

Conversation is an occasion for an individual to try to raise the topic of return performance

if it is good, or to avoid the topic if it is bad. Suppressing i subscripts, let π(R, x) be the

utility to the sender of discussing his return R,

π(R, x) = R +
x

β′
, (42)

where β′ is a positive constant, and random variable x measures whether, in the particular

social and conversational context, raising the topic of own-performance is appropriate or

even obligatory.

The sender sends if and only if π > 0, so

s(R) = Pr (x > −β′R|R)

= 1− F (−β′R), (43)

where F is the distribution function of x. If x ∼ U [τ1, τ2], where τ1 < 0, τ2 > 0, then

s(R) =
τ2 + β′R

τ2 − τ1

=
τ2

τ2 − τ1

+ βR, (44)

where β ≡ β′/(τ2−τ1), and where we restrict the domain of R to satisfy −τ2/β
′ < R < τ1/β

′

to ensure that the sending probability lies between 0 and 1. This will hold almost surely

if |τ1|, |τ2| are sufficiently large. Equation (44) is identical to the sending function (4) in

Subsection 2.2 with

γ ≡ τ2

τ2 − τ1

.

In Sender’s utility π(R, x) of discussing return R, the parameter β′ captures the value

placed on mentioning one’s high return experience, versus the appropriateness of doing so.

The more tightly bound is Sender’s self-esteem or reputation to return performance, the

larger is the parameter β′, and hence the stronger is SET, as measured by β in the sending

function (4) which is proportional to β′.

The constant γ in the sending function (4) reflects the conversability of the investment

choice. When investment is a more attractive topic for conversation or when conversa-

tions are more extensive, as occurs when individuals are more sociable, higher γ shifts the

distribution of x to the right (i.e., an increase in τ2, for given τ2 − τ1, implies higher γ).
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B Proof of Proposition 3

To show Part 1, we differentiate (18) with respect to D to obtain that if D < 0 or D is

positive but not too large,26(
2N

χ

)
∂E[∆f ]

∂D
= −3aβ(β2

Aσ
2
r + σ2

A) +D(−3aDβ + 2B)− C < 0.

For Part 2a, differentiating with respect to factor skewness γ1r gives(
2N

χ

)
∂E[∆f ]

∂γ1r

= aβσ3
r(β

3
A − β3

P )

> 0, (45)

since βA > βP . Thus, the advantage of A over P is increasing with factor skewness.

For Part 2b, differentiating with respect to active idiosyncratic skewness γ1A gives(
2N

χ

)
∂E[∆f ]

∂γ1A

= aβσ3
A

> 0. (46)

Thus, the advantage of A over P is increasing with the idiosyncratic skewness of A.

For Part 2c, it is enough to note that the right hand sides of (45) and (46) both increase

with SET in the sending function as reflected in β and salience of extreme returns in the

receiving function as reflected in a.

For Part 3a, differentiating with respect to active idiosyncratic volatility σA gives(
2N

χ

)
∂E[∆f ]

∂σA
= 3aβγ1Aσ

2
A + 2(B − 3aDβ)σA

> 0 (47)

if D ≈ 0 or D < 0. Thus, if D is sufficiently small, the growth of A increases with active

idiosyncratic volatility σA. Greater return variance increases the effect of SET on the part

of the sender. Although high salience to receivers of extreme returns (a > 0) is not required

for the result, it reinforces this effect. Indeed, even if there were no SET (β = 0), since

a > 0 implies that B > 0, the result would still hold. Intuitively, high volatility generates

the extreme outcomes which receive high attention.

26The ambiguity for large D results from a spurious effect: for sufficiently large negative R, the slope of
the quadratic receiving function turns negative. In consequence, a larger return penalty to active trading,
D, can, perversely, help convert Ps to As by inducing larger losses.
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For Part 3b, differentiating with respect to the factor loading of the active strategy, βA,

gives (
2N

χ

)
∂E[∆f ]

∂βA
= 3aββ2

Aγ1rσ
3
r + 2βAσ

2
rB − 6aββAσ

2
rD

> 0 (48)

if D < 0 or D ≈ 0. So a greater factor loading for A increases the spread of A, since the

greater dispersion of return outcomes encourages the sending of high, influential messages.

For Part 3c, differentiating with respect to the variance of the common factor, σ2
r gives(

2N

χ

)
∂E[∆f ]

∂σ2
r

= 1.5aβ(β3
A − β3

P )γ1rσr +B(β2
A − β2

P )− 3Daββ2
A

> 0 (49)

if D < 0 or D ≈ 0. So greater volatility of the common factor favors the spread of A.

Greater factor volatility outcomes encourages the spread of the strategy with the greater

loading, A, by creating greater scope for SET to operate.

For Part 3d, note that the right hand sides of equations (47), (48), and (49)) increase

with B = aγ + bβ (which is in turn positively related to γ by definition) as well as SET

in the sending function as reflected in β and salience of extreme returns in the receiving

function as reflected in a.

For Part 4, we differentiate with respect to β, the strength of SET. This reflects how

tight the link is between the sender’s self-esteem and performance. Recalling by (7) that

B is an increasing function of β, gives(
2N

χ

)
∂E[∆f ]

∂β
= a(γ1Aσ

3
A − γ1Pσ

3
P ) + aσ3

r(β
3
A − β3

P )γ1r + b[(β2
A − β2

P )σ2
r + σ2

A − σ2
P ]

+ Da(−3σ2
A − 3β2

Aσ
2
r −D2) +D2b−Dc

> 0 (50)

if D ≈ 0 or D < 0. So greater SET increases the evolution toward A, because SET causes

greater reporting of the high returns that make A enticing for receivers. A generates extreme

returns for SET to operate upon through higher factor loading, idiosyncratic volatility, or

more positive idiosyncratic skewness.

For Part 5, differentiating with respect to how prone receivers are to extrapolating

returns, b, gives(
2N

χ

)
∂E[∆f ]

∂b
= β[(β2

A − β2
P )σ2

r + σ2
A − σ2

P ] +D(Dβ − γ)

> 0 (51)
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if D ≈ 0 or D < 0. Greater extrapolativeness of receivers helps A spread by magnifying

the effect of SET (reflected in β), which spreads A because of the higher volatility of A

returns.

For Part 6, recall that the quadratic term of the receiving function a reflects greater

attention on the part of the receiver to extreme profit outcomes communicated by the

sender. Differentiating with respect to a gives(
2N

χ

)
∂E[∆f ]

∂a
= βσ3

rγ1r(β
3
A − β3

P ) + β[γ1Aσ
3
A − γ1Pσ

3
P ] + γ[(β2

A − β2
P )σ2

r + σ2
A − σ2

P ]

− 3Dβ(β2
Aσ

2
r + σ2

A) +D2γ −D3β

> 0 (52)

if D ≈ 0 or D < 0. So greater attention by receivers to extreme outcomes, a, promotes

the spread of A over P because A generates more of the extreme returns which, when a is

high, are especially noticed and more likely to persuade receivers. This effect is reinforced

by SET, which causes greater reporting of extreme high returns.

For Part 7, differentiating with respect to conversability γ gives(
2N

χ

)
∂E[∆f ]

∂γ
= a[(β2

A − β2
P )σ2

r + σ2
A − σ2

P ]− bD + aD2

> 0 (53)

if D ≈ 0 or if D < 0. Greater conversability γ can help the active strategy spread because

of the greater attention paid by receivers to extreme returns (a > 0), which are more often

generated by the A strategy. When D < 0, this effect is reinforced by the higher mean

return of A. In this case an unconditional increase in the propensity to report returns tends

to promote the spread of the sender’s type more when the sender is A. On the other hand, if

D > 0 is sufficiently large, A earns lower return than P on average, so greater conversability

incrementally produces more reporting of lower returns when the sender is A than P, which

opposes the spread of A.

Lastly, for Part 8 of the Proposition 3, differentiating with respect to the susceptibility

of receivers c gives (
2N

χ

)
∂E[∆f ]

∂c
= −Dβ

> 0 (54)

if D < 0; the inequality is reversed if D > 0. Greater susceptibility increases the likelihood

that the receiver is transformed given that the sender sends. Owing to SET (as reflected in
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the β term above) the probability that A sends is increased relative to the probability that

P sends when the returns of A are higher, i.e., D < 0. This condition will hold if there is a

risk premium for the active strategy, even if the premium is not fully commensurate with

the risk.

C Proof of Proposition 4

In Section 2.6, we denoted by RA and RP the returns of active and passive strategies over

the period immediately prior to the conversation between A and P . We now consider an

interval of calendar time of length ∆. We first examine how the unconditional population

frequency of A changes over a given time period [t, t + ∆] after θN pairs of individuals

meet, letting the size of population N approaches infinity. We then derive a stochastic

differential equation which describes the continuous time dynamics for the evolution of the

frequency of A in the population by letting the length of time period ∆ shrink towards

zero.

In the factor model for RA and RP as in (15), let µ and σr be the mean and standard

deviation of the return of the common factor over a unit time interval, σA and σP the

standard deviation over a unit time interval of the idiosyncratic return of the strategy A

and P, and γ1A, γ1P denote the corresponding skewness. (Later we will specify a standard

Gaussian diffusion process for the common factor return so that the factor skewness is

zero.)

Suppose that over the interval [t, t + ∆], θN paired meetings occur in sequence. By

(3), when population size N approaches infinity, the probability χ of drawing a mixed pair

in any one of these meetings is 2ft(1 − ft), up to to an error that is of the order o(1/N).

Letting ω be an index for the θN meetings, by (10), the change in the population frequency

of A is up to an error that shrinks to zero with N

ft+∆ − ft ≈ ft(1− ft)
1

N

θN∑
ω=1

[TAP (RAω)]− [TPA(RPω)]

= ft(1− ft)
1

N

θN∑
ω=1

aβ
(
R3
Aω −R3

Pω

)
+B

(
R2
Aω −R2

Pω

)
+ C(RAω −RPω).

42



Substituting (15) into the above, we have

ft+∆ − ft ≈ ft(1− ft)
1

N

θN∑
ω=1

aβ[(β3
A − β3

P )r3 + 3r2(β2
AεAω − β2

P εPω) + 3r(βAε
2
Aω − βP ε2Pω) + ε3Aω − ε3Pω]

+ B[(β2
A − β2

P )r2 + 2r(βAεAω − βP εPω) + ε2Aω − ε2Pω] + C[(βA − βP )r + εAω − εPω]

+ D∆{−(rβA + εAω)[3aβ(rβA + εAω) + 2B]− C}+D2∆2[3aβ(rβA + εAω) +B]

− aD3∆3β, (55)

where we have omitted subscripts for the return horizon (t, t+∆) from the return variables

for brevity (r = r(t, t+ ∆), RAω = RAω(t, t+ ∆), and εAω = εAω(t, t+ ∆)).

When the population size N approaches infinity, by the law of large numbers the ran-

domness coming from the matching process and from individual-specific return components

average out. This allows replacing all terms involving ε in (55) with their expected values.

Note that

εi(t, t+ ∆) + εi(t+ ∆, t+ 2∆) + · · ·+ εi(t+ (m− 1)∆, t+m∆) = εi(t, t+ 1),

where i = A,P , and m = 1/∆. Taking the sum of the subinterval returns, squaring or

cubing, taking the expectation, and recognizing (since the returns over time are i.i.d.) that

all the cross-time terms are zero, we find that the moments of the return distributions are

proportional to the length of the return interval [t, t+ ∆],

E[εi(t, t+ ∆)2] = E[εi(t, t+ 1)2]∆ = σ2
i ∆

E[εi(t, t+ ∆)3] = E[εi(t, t+ 1)3]∆ = σ3
i γ1i∆. (56)

By (55) and (56), and taking the limit as N approaches infinity,

ft+∆ − ft = θft(1− ft){aβ[(β3
A − β3

P )r3 + 3r(βAσ
2
A − βPσ2

P )∆ + (γ1Aσ
3
A − γ1Pσ

3
P )∆]

+ B[(β2
A − β2

P )r2 + (σ2
A − σ2

P )∆] + C(βA − βP )r − aD3∆3β

−D∆[3aββ2
Ar

2 + 3aβσ2
A∆ + 2BβAr + C] +D2∆2(3aβrβA +B)}. (57)

Next, we shrink the length of each period ∆ towards zero and derive the continuous-

time evolutionary dynamic of the population frequency of type A as a stochastic differential

equation. We assume that the cumulative return Rt (log price change) of the common

factor between time 0 and t follows a Gaussian random walk (with a zero drift in order to

be consistent with the assumption in Section 2.6 that the expected return of the common

factor is zero):

dRt = σrdWt,

43



where W is a standard Brownian motion. As ∆→ 0, r = r(t, t+∆) can be replaced by dR.

By the properties of product of stochastic differentials, r2 can be replaced by (dR)2 = σ2
rdt,

and r3 can be replaced by (dR)3 = 0. Thus, in an infinite population and letting ∆ → 0,

a stochastic differential equation for the fraction of type A follows from (57):

dft = θft(1− ft)[Kdt+ C(βA − βP )σrdWt], (58)

where K is a constant that depends on the model parameters that characterize the sending

and receiving functions, as well as the return distributions of the strategies,

K = aβ(γ1Aσ
3
A − γ1Pσ

3
P ) +B[(β2

A − β2
P )σ2

r + (σ2
A − σ2

P )]− CD. (59)

To prove the comparative statics in Proposition 4, we show the following stochastic domi-

nance property for the evolution of the fraction of A in the population.

Lemma 1 Consider two sets of model parameters Θ and Θ′ (each being a vector (a, b, c, β,

γ, σr, βA, βP , σA, σP , γ1r, γ1A, γ1P )) such that the corresponding values for C(βA− βP )σr

are the same but K ′ > K. Then for any given time t > 0 and along any given path of

realizations for the Brownian motion term dW , the fraction of A in the population satisfy

f ′t ≥ ft.

Corresponding to the set of model parameters Θ′, the fraction of type A in the popula-

tion f ′ follows a diffusion process that is similar to the dynamics (58) for f :

df ′t = θf ′t(1− f ′t)[K ′dt+ C(βA − βP )σrdWt]. (60)

By assumption, the two sets of parameters lead to the same value C(βA − βP )σr in the

diffusion coefficient, but K ′ > K in the drift term. Hence, f ′ − f satisfy the following

diffusion process:

d(f ′t−ft) = θ[K ′f ′t(1−f ′t)−Kft(1−ft)]dt+θC(βA−βP )σr[f
′
t(1−f ′t)−ft(1−ft)]dWt. (61)

At date 0, f ′ and f start at the same initial value and have the same diffusion coefficients,

but the drift term of f ′ is larger than that of f . Hence, f ′− f is locally deterministic with

positive drift near t = 0. This implies that f ′t > ft when t > 0 is sufficiently small.

We next prove by contradiction that for any t > 0, f ′t ≥ ft along any identical path of

realizations for the Brownian motion innovations. If at some time T , f ′T < fT , then there

must exist a time 0 < τ < T such that f ′τ = fτ , because f ′ − f has a continuous sample
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path and takes positive value when t > 0 is small. However, at time τ , the instantaneous

diffusion coefficient of f ′ − f is zero (because f ′τ = fτ ), but the drift term is positive

(because f ′τ = fτ and K ′ > K). Thus, the process f ′ − f has a reflecting barrier at zero:

if it takes on the value of zero it will subsequently have positive values with probability

one. This contradicts f ′T < fT for T > τ . So it follows that f ′ ≥ f along any given path

of realizations for the Brownian motion term, and the set of τ such that f ′τ = fτ has zero

density since f ′ − f has a reflecting boundary at zero.

It is straightforward to prove the comparative statics in Proposition 4 based on the

path-by-path stochastic dominance result above, and the following observations:

1. A change in the value of any of the parameters D, γ1A, σA, a does not affect C(βA−
βP )σr (the same is true for β when c = 0). Thus, Lemma 1 applies;

2. ∂K
∂D

= −C < 0;

3. ∂K
∂γ1A

= aβ > 0;

4. ∂K
∂σA

= 3aβγ1Aσ
2
A + 2BσA > 0;

5. ∂K
∂a

= β(γ1Aσ
3
A − γ1Pσ

3
P ) > 0;

6. ∂K
∂β

= a(γ1Aσ
3
A − γ1Pσ

3
P ) + b[(β2

A − β2
P )σ2

r + (σ2
A − σ2

P )] > 0.

D Equilibrium When Receiver Susceptibility Depends

on Sender Type

In the main text, our model assumes the receiver susceptibility parameter c in the receiving

function is the same regardless whether the sender is an A than a P. Here we study the

equilibrium expected return in the setting of Section 3 when the receiver susceptibility

satisifies cSA < cSP (i.e., after hearing a given return, receivers are less likely to switch

strategy if it comes from an active type).

All the asset pricing equations in Sections 3.1 and 3.2 continue to hold when the receiver

susceptibility parameter depends on the sender type. The same steps in Section 3.3 can be

applied to derive the dynamic of the fraction of As. When cSA < cSP , the dynamic for the

population frequency ft of A becomes

2n(ft+1 − ft)
ft(1− ft)

= B(w2
At − w2

Pt)[Et(RS)2 + σ2
S] + bγEt(RS)

+ β(cSAwAt − cSPwPt)Et(RS) + (cSA − cSP )γ. (62)
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The stable frequency f ∗ now satisfies Ĥ(f ∗) = 0, where

Ĥ(f) ≡ B(w2
At−w2

Pt)[Et(RS)2+σ2
S]+bγEt(RS)+β(cSAwAt−cSPwPt)Et(RS)+(cSA−cSP )γ.

(63)

If the difference in susceptibility is sufficiently large,

cSP − cSA >
Bκ[(2 + κ)νσ2

S + κ](1 + νσ2
S)

γν2σ2
S

, (64)

then the RHS of (62) is negative, and hence the net conversion from P to A is negative,

when evaluated at the fraction of A corresponding to E[RS] = 0. Since both the net

conversion rate from P to A and E[RS] decrease with f , it follows when the difference in

susceptibility is sufficiently large, the expected return premium on the risky asset at the

stable fraction f ∗ is positive.

E Trading Volume

We now generalize the equilibrium model to provide implications for volume of trade, by

allowing differences in optimism about the risky asset among A investors. One interpre-

tation of A versus P considered previously is that the As are unduly optimistic about a

given risky security, whereas the Ps are not. An alternative interpretation, which we focus

on here, is that A has a broader belief that stock picking or market timing is a worthwhile

activity. Investors who believe that these are worthwhile will investigate to refine their val-

uations of the risky asset. In contrast, passive investors by assumption share some common

prior belief (some conventional view prevalent in society), do not investigate further, and

hence remain in agreement. In consequence, actives form divergent beliefs about the asset

whereas passive investors do not.

We therefore assign heterogeneous expectations about the value of the risky asset to

the As,

V
Ak

= V
A

+ ψk, (65)

where k refers to an individual type A investor, V
Ak

is investor k’s expectation of the

terminal cash flow of the security, where ψk is uniformly distributed on an interval [−u, u].

The parameter u captures the amount of disagreement among the As.

Owing to the diversity of expectations among the As, they trade with each other, which

contributes to higher volume of trade as a function of the frequency of A in the population.

However, owing to the difference in belief between As and Ps, there is also trading between

individuals of different types.
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In general, the diversity of the As makes the analysis of evolution of the population

more complex. To simplify, we let u be sufficiently close to zero that the evolution of the

population is arbitrarily well approximated by a setting in which the As are identical.

We additionally let the difference in beliefs of the As and Ps become arbitrarily close to

zero more rapidly than u does, i.e., (V A − V P )/u→ 0. This captures in extreme form the

idea that the dispersion in beliefs among the actives is wider than the difference between

the average beliefs of the As and the Ps. Under this assumption, volume is dominated

by trading amongst A’s rather than between types. As a result, as the frequencies of the

different types shift, the qualitative prediction that volume of trade increases with the

fraction of As remains valid.

Proposition 7 Under the assumptions of this subsection, a higher fraction of As in the

population implies higher volume of trade.

Proposition 3 gives predictions about the conditions under which the expected fraction

of As grows. Proposition 7 suggests that in a generalization in which As have diverse

opinions, under appropriate conditions the comparative statics of Proposition 3 provide

corresponding predictions about the determinants of increased trading volume.

As discussed in Subsection 2.3, the basic model implies a frothy churning of beliefs

as investing ideas are transmitted from person to person. Even if A does not end up

dominating the population, stochastic fluctuation in population fractions of A and P is a

continuing source of turnover. In consequence, the model implies excessive volume of trade

even in the absence of overconfidence, and that such volume is increasing with proxies for

social connectedness.
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